optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

نویسندگان

y. chu

s. hou

w. xia

چکیده

we find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} c(a,b)+(1-alpha_{1} )h(a,b)

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

Optimal Convex Combinations Bounds of Centroidal and Harmonic Means for Weighted Geometric Mean of Logarithmic and Identric Means

In this paper, optimal convex combination bounds of centroidal and harmonic means for weighted geometric mean of logarithmic and identric means are proved. We find the greatest value λ(α) and the least value Δ(α) for each α ∈ (0,1) such that the double inequality: λC(a,b)+(1−λ)H(a,b) < Lα (a,b)I1−α (a,b) < ΔC(a,b)+(1−Δ)H(a,b) holds for all a,b > 0 with a = b. Here, C(a,b), H(a,b) , L(a,b) and I...

متن کامل

Optimal inequalities for the power, harmonic and logarithmic means

For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

متن کامل

Inequalities between Power Means and Convex Combinations of the Harmonic and Logarithmic Means

We prove that αH a, b 1 − α L a, b > M 1−4α /3 a, b for α ∈ 0, 1 and all a, b > 0 with a/ b if and only if α ∈ 1/4, 1 and αH a, b 1 − α L a, b < M 1−4α /3 a, b if and only if α ∈ 0, 3√345/80 − 11/16 , and the parameter 1 − 4α /3 is the best possible in either case. Here, H a, b 2ab/ a b , L a, b a − b / loga − log b , and Mp a, b a b /2 1/p p / 0 and M0 a, b √ ab are the harmonic, logarithmic, ...

متن کامل

optimal inequalities for the power, harmonic and logarithmic means

for all $a,b>0$, the following two optimal inequalities are presented: $h^{alpha}(a,b)l^{1-alpha}(a,b)geq m_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ h^{alpha}(a,b)l^{1-alpha}(a,b)leq m_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. here, $h(a,b)$, $l(a,b)$, and $m_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

متن کامل

The Optimal Convex Combination Bounds of Harmonic Arithmetic and Contraharmonic Means for the Neuman means

In the paper, we find the greatest values α1, α2, α3, α4 and the least values β1, β2, β3, β4 such that the double inequalities α1A(a, b) + (1− α1)H(a, b) < N ( A(a, b), G(a, b) ) < β1A(a, b) + (1− β1)H(a, b), α2A(a, b) + (1− α2)H(a, b) < N ( G(a, b), A(a, b) ) < β2A(a, b) + (1− β2)H(a, b), α3C(a, b) + (1− α3)A(a, b) < N ( Q(a, b), A(a, b) ) < β3C(a, b) + (1− β3)A(a, b), α4C(a, b) + (1− α4)A(a, ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

ناشر: iranian mathematical society (ims)

ISSN 1017-060X

دوره 39

شماره 2 2013

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023